Desorption of CO and O2 interstellar ice analogs
نویسندگان
چکیده
Aims. Solid O2 has been proposed as a possible reservoir for molecular oxygen in dense clouds through freeze-out processes. The aim of this work is to characterize quantitatively the physical processes that are involved in the desorption kinetics of CO–O2 ices by interpreting laboratory temperature programmed desorption (TPD) data. This information is used to simulate the behavior of CO–O2 ices under astrophysical conditions. Methods. The TPD spectra have been recorded under ultra high vacuum conditions for pure, layered and mixed morphologies for different thicknesses, temperatures and mixing ratios. An empirical kinetic model is used to interpret the results and to provide input parameters for astrophysical models. Results. Binding energies are determined for different ice morphologies. Independent of the ice morphology, the desorption of O2 is found to follow 0th-order kinetics. Binding energies and temperature-dependent sticking probabilities for CO–CO, O2–O2 and CO–O2 are determined. O2 is slightly less volatile than CO, with a binding energy of 912 ± 15 versus 858 ± 15 K for pure ices. In mixed and layered ices, CO does not co-desorb with O2 but its binding energy is slightly increased compared to pure ice whereas that of O2 is slightly decreased. Lower limits to the sticking probabilities of CO and O2 are 0.9 and 0.85, respectively, at temperatures below 20 K. The balance between accretion and desorption is studied for O2 and CO in astrophysically relevant scenarios. Only minor differences are found between the two species, i.e., both desorb between 16 and 18 K in typical environments around young stars. Thus, clouds with significant abundances of gaseous CO are unlikely to have large amounts of solid O2.
منابع مشابه
Comparative studies of O2 and N2 in pure, mixed and layered CO ices.
We present laboratory data on pure, layered and mixed CO and O2 ices relevant for understanding the absence of gaseous O2 in space. Experiments have been performed on interstellar ice analogues under ultra high vacuum conditions by molecular deposition at 14 K on a gold surface. A combination of reflection absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD) is u...
متن کاملInfrared spectroscopy of interstellar apolar ice analogs
Apolar ices have been observed in several regions in dense clouds and are likely dominated by molecules such as CO, CO2 and the infrared inactive molecules O2 and N2. Interstellar solid CO has been well characterized by ground-based high resolution measurements. Recent ISO results showed the ubiquitous presence of abundant CO2 ice and the presence of CO2-rich ice mantles towards several molecul...
متن کاملMobility of D atoms on porous amorphous water ice surfaces under interstellar conditions
Aims. The mobility of H atoms on the surface of interstellar dust grains at low temperature is still a matter of debate. In dense clouds, the hydrogenation of adsorbed species (i.e., CO), as well as the subsequent deuteration of the accreted molecules depend on the mobility of H atoms on water ice. Astrochemical models widely assume that H atoms are mobile on the surface of dust grains even if ...
متن کاملLaboratory studies of the spectroscopy and physical behaviour of CO-containing interstellar ices
Context. High resolution observations of the 4.67 μm stretching vibration of solid CO towards low mass star forming regions show remarkably consistent trends in the component features of the CO ice band. Key questions arising from this analysis point towards the need for a chemical explanation of these phenomena. Aims. To understand and interpret observations of CO ice features by comparing the...
متن کاملWavelength resolved UV photodesorption and photochemistry of CO2 ice.
Over the last four years we have illustrated the potential of a novel wavelength-dependent approach in determining molecular processes at work in the photodesorption of interstellar ice analogs. This method, utilizing the unique beam characteristics of the vacuum UV beamline DESIRS at the French synchrotron facility SOLEIL has revealed an efficient indirect desorption mechanism that scales with...
متن کامل